Internal
problem
ID
[22503]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
two.
First
order
and
simple
higher
order
ordinary
differential
equations.
A
Exercises
at
page
40
Problem
number
:
9
Date
solved
:
Thursday, October 02, 2025 at 08:43:29 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
With initial conditions
ode:=x^3+y(x)^3-x*y(x)^2*diff(y(x),x) = 0; ic:=[y(1) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=(x^3+y[x]^3)-(x*y[x]^2)*D[y[x],x]==0; ic={y[1]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3 - x*y(x)**2*Derivative(y(x), x) + y(x)**3,0) ics = {y(1): 0} dsolve(ode,func=y(x),ics=ics)