85.13.2 problem 2

Internal problem ID [22508]
Book : Applied Differential Equations. By Murray R. Spiegel. 3rd edition. 1980. Pearson. ISBN 978-0130400970
Section : Chapter two. First order and simple higher order ordinary differential equations. B Exercises at page 40
Problem number : 2
Date solved : Thursday, October 02, 2025 at 08:43:55 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} y^{\prime }&=\frac {2 x +5 y}{2 x -y} \end{align*}
Maple. Time used: 0.009 (sec). Leaf size: 35
ode:=diff(y(x),x) = (2*x+5*y(x))/(2*x-y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ 3 \ln \left (\frac {y+x}{x}\right )-4 \ln \left (\frac {y+2 x}{x}\right )-\ln \left (x \right )-c_1 = 0 \]
Mathematica. Time used: 60.066 (sec). Leaf size: 1823
ode=D[y[x],x]==(2*x+5*y[x])/(2*x-y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (2*x + 5*y(x))/(2*x - y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out