85.13.7 problem 7

Internal problem ID [22513]
Book : Applied Differential Equations. By Murray R. Spiegel. 3rd edition. 1980. Pearson. ISBN 978-0130400970
Section : Chapter two. First order and simple higher order ordinary differential equations. B Exercises at page 40
Problem number : 7
Date solved : Thursday, October 02, 2025 at 08:44:20 PM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (3 x -y-9\right ) y^{\prime }&=10-2 x +2 y \end{align*}
Maple. Time used: 0.236 (sec). Leaf size: 31
ode:=(3*x-y(x)-9)*diff(y(x),x) = 10-2*x+2*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (-x +2\right ) \operatorname {RootOf}\left (\left (x -2\right )^{3} c_1 \,\textit {\_Z}^{4}-\textit {\_Z} -3\right )-x -1 \]
Mathematica. Time used: 60.114 (sec). Leaf size: 4945
ode=(3*x-y[x]-9)*D[y[x],x]==10-2*x+2*y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x + (3*x - y(x) - 9)*Derivative(y(x), x) - 2*y(x) - 10,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out