Internal
problem
ID
[22516]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
two.
First
order
and
simple
higher
order
ordinary
differential
equations.
B
Exercises
at
page
40
Problem
number
:
10
Date
solved
:
Thursday, October 02, 2025 at 08:44:52 PM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
ode:=2*x*sin(y(x)/x)+2*x*tan(y(x)/x)-y(x)*cos(y(x)/x)-y(x)*sec(y(x)/x)^2+(x*cos(y(x)/x)+x*sec(y(x)/x)^2)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2*x*Sin[y[x]/x]+2*x*Tan[y[x]/x]-y[x]*Cos[y[x]/x ] - y[x]*Sec[y[x]/x]^2 ) +( x*Cos[y[x]/x]+x*Sec[y[x]/x]^2 )*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*sin(y(x)/x) + 2*x*tan(y(x)/x) + (x*cos(y(x)/x) + x*sec(y(x)/x)**2)*Derivative(y(x), x) - y(x)*cos(y(x)/x) - y(x)*sec(y(x)/x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out