Internal
problem
ID
[22517]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
two.
First
order
and
simple
higher
order
ordinary
differential
equations.
C
Exercises
at
page
41
Problem
number
:
1
(a)
Date
solved
:
Thursday, October 02, 2025 at 08:45:12 PM
CAS
classification
:
[[_homogeneous, `class C`], _dAlembert]
ode:=diff(y(x),x) = ((x+y(x))^(1/2)+(x-y(x))^(1/2))/((x+y(x))^(1/2)-(x-y(x))^(1/2)); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]== ( Sqrt[x+y[x]] + Sqrt[x-y[x]] )/( Sqrt[x+y[x]] - Sqrt[x-y[x]] ) ; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (sqrt(x - y(x)) + sqrt(x + y(x)))/(-sqrt(x - y(x)) + sqrt(x + y(x))),0) ics = {} dsolve(ode,func=y(x),ics=ics)