85.15.2 problem 1 (b)

Internal problem ID [22527]
Book : Applied Differential Equations. By Murray R. Spiegel. 3rd edition. 1980. Pearson. ISBN 978-0130400970
Section : Chapter two. First order and simple higher order ordinary differential equations. A Exercises at page 47
Problem number : 1 (b)
Date solved : Thursday, October 02, 2025 at 08:46:31 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} y^{\prime }&=\frac {x -y}{x +y} \end{align*}
Maple. Time used: 0.012 (sec). Leaf size: 51
ode:=diff(y(x),x) = (x-y(x))/(x+y(x)); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {-c_1 x -\sqrt {2 x^{2} c_1^{2}+1}}{c_1} \\ y &= \frac {-c_1 x +\sqrt {2 x^{2} c_1^{2}+1}}{c_1} \\ \end{align*}
Mathematica. Time used: 0.26 (sec). Leaf size: 94
ode=D[y[x],x]== (x-y[x])/(x+y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -x-\sqrt {2 x^2+e^{2 c_1}}\\ y(x)&\to -x+\sqrt {2 x^2+e^{2 c_1}}\\ y(x)&\to -\sqrt {2} \sqrt {x^2}-x\\ y(x)&\to \sqrt {2} \sqrt {x^2}-x \end{align*}
Sympy. Time used: 0.683 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-x + y(x))/(x + y(x)) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - x - \sqrt {C_{1} + 2 x^{2}}, \ y{\left (x \right )} = - x + \sqrt {C_{1} + 2 x^{2}}\right ] \]