Internal
problem
ID
[22539]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
two.
First
order
and
simple
higher
order
ordinary
differential
equations.
A
Exercises
at
page
47
Problem
number
:
2
(d)
Date
solved
:
Thursday, October 02, 2025 at 08:48:42 PM
CAS
classification
:
[`y=_G(x,y')`]
With initial conditions
ode:=diff(y(x),x) = (2*sin(2*x)-tan(y(x)))/x/sec(y(x))^2; ic:=[y(Pi) = 1/4*Pi]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],x]==(2*Sin[2*x]-Tan[y[x]] )/( x*Sec[y[x]]^2 ); ic={y[Pi]==Pi/4}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (2*sin(2*x) - tan(y(x)))/(x*sec(y(x))**2),0) ics = {y(pi): pi/4} dsolve(ode,func=y(x),ics=ics)
Timed Out