Internal
problem
ID
[22546]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
two.
First
order
and
simple
higher
order
ordinary
differential
equations.
C
Exercises
at
page
48
Problem
number
:
2
Date
solved
:
Thursday, October 02, 2025 at 08:49:38 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=x*y(x)^2+2*y(x)+(3*x^2*y(x)-4*x)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x*y[x]^2+2*y[x] )+(3*x^2*y[x]-4*x)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*y(x)**2 + (3*x**2*y(x) - 4*x)*Derivative(y(x), x) + 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)