85.18.8 problem 1 (h)

Internal problem ID [22554]
Book : Applied Differential Equations. By Murray R. Spiegel. 3rd edition. 1980. Pearson. ISBN 978-0130400970
Section : Chapter two. First order and simple higher order ordinary differential equations. A Exercises at page 52
Problem number : 1 (h)
Date solved : Thursday, October 02, 2025 at 08:50:34 PM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} y^{\prime }&=\frac {y}{y^{3}-3 x} \end{align*}
Maple. Time used: 0.006 (sec). Leaf size: 167
ode:=diff(y(x),x) = y(x)/(y(x)^3-3*x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \left (3 x -\sqrt {9 x^{2}-6 c_1}\right )^{{1}/{3}} \\ y &= \left (3 x +\sqrt {9 x^{2}-6 c_1}\right )^{{1}/{3}} \\ y &= -\frac {\left (3 x -\sqrt {9 x^{2}-6 c_1}\right )^{{1}/{3}} \left (1+i \sqrt {3}\right )}{2} \\ y &= \frac {\left (3 x -\sqrt {9 x^{2}-6 c_1}\right )^{{1}/{3}} \left (i \sqrt {3}-1\right )}{2} \\ y &= -\frac {\left (3 x +\sqrt {9 x^{2}-6 c_1}\right )^{{1}/{3}} \left (1+i \sqrt {3}\right )}{2} \\ y &= \frac {\left (3 x +\sqrt {9 x^{2}-6 c_1}\right )^{{1}/{3}} \left (i \sqrt {3}-1\right )}{2} \\ \end{align*}
Mathematica. Time used: 2.019 (sec). Leaf size: 194
ode=D[y[x],x]== y[x]/( y[x]^3-3*x); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \sqrt [3]{3 x-\sqrt {9 x^2-6 c_1}}\\ y(x)&\to -\sqrt [3]{-1} \sqrt [3]{3 x-\sqrt {9 x^2-6 c_1}}\\ y(x)&\to (-1)^{2/3} \sqrt [3]{3 x-\sqrt {9 x^2-6 c_1}}\\ y(x)&\to \sqrt [3]{3 x+\sqrt {9 x^2-6 c_1}}\\ y(x)&\to -\sqrt [3]{-1} \sqrt [3]{3 x+\sqrt {9 x^2-6 c_1}}\\ y(x)&\to (-1)^{2/3} \sqrt [3]{3 x+\sqrt {9 x^2-6 c_1}}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 7.547 (sec). Leaf size: 187
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - y(x)/(-3*x + y(x)**3),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \sqrt [3]{3 x - \sqrt {3} \sqrt {C_{1} + 3 x^{2}}}, \ y{\left (x \right )} = \sqrt [3]{3 x + \sqrt {3} \sqrt {C_{1} + 3 x^{2}}}, \ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{3 x - \sqrt {3} \sqrt {C_{1} + 3 x^{2}}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{3 x - \sqrt {3} \sqrt {C_{1} + 3 x^{2}}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{3 x + \sqrt {3} \sqrt {C_{1} + 3 x^{2}}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{3 x + \sqrt {3} \sqrt {C_{1} + 3 x^{2}}}}{2}\right ] \]