Internal
problem
ID
[22562]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
two.
First
order
and
simple
higher
order
ordinary
differential
equations.
C
Exercises
at
page
52
Problem
number
:
2
Date
solved
:
Thursday, October 02, 2025 at 08:51:32 PM
CAS
classification
:
[_rational, [_Abel, `2nd type`, `class B`]]
ode:=y(x)^2+x*y(x)+1+(x^2+x*y(x)+1)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(y[x]^2+x*y[x]+1 )+( x^2+x*y[x]+1 )*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*y(x) + (x**2 + x*y(x) + 1)*Derivative(y(x), x) + y(x)**2 + 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out