Internal
problem
ID
[22618]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
two.
First
order
and
simple
higher
order
ordinary
differential
equations.
A
Exercises
at
page
63
Problem
number
:
2
Date
solved
:
Thursday, October 02, 2025 at 08:55:09 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Clairaut]
ode:=y(x) = x*diff(y(x),x)+1+4*diff(y(x),x)^2; dsolve(ode,y(x), singsol=all);
ode=y[x]==x*D[y[x],{x,1}]+1+4*D[y[x],{x,1}]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*Derivative(y(x), x) + y(x) - 4*Derivative(y(x), x)**2 - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)