85.33.11 problem 11

Internal problem ID [22634]
Book : Applied Differential Equations. By Murray R. Spiegel. 3rd edition. 1980. Pearson. ISBN 978-0130400970
Section : Chapter two. First order and simple higher order ordinary differential equations. A Exercises at page 65
Problem number : 11
Date solved : Thursday, October 02, 2025 at 08:57:05 PM
CAS classification : [[_homogeneous, `class A`], _dAlembert]

\begin{align*} y^{\prime }&=\frac {y}{x}+\arctan \left (\frac {y}{x}\right ) \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 21
ode:=diff(y(x),x) = y(x)/x+arctan(y(x)/x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}\frac {1}{\arctan \left (\textit {\_a} \right )}d \textit {\_a} +\ln \left (x \right )+c_1 \right ) x \]
Mathematica. Time used: 0.123 (sec). Leaf size: 26
ode=D[y[x],x]== y[x]/x + ArcTan[ y[x]/x ]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\frac {y(x)}{x}}\frac {1}{\arctan (K[1])}dK[1]=\log (x)+c_1,y(x)\right ] \]
Sympy. Time used: 0.456 (sec). Leaf size: 3
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(atan(y(x)/x) + Derivative(y(x), x) - y(x)/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = 0 \]