Internal
problem
ID
[22641]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
two.
First
order
and
simple
higher
order
ordinary
differential
equations.
A
Exercises
at
page
65
Problem
number
:
18
Date
solved
:
Thursday, October 02, 2025 at 08:57:18 PM
CAS
classification
:
[_rational, _Bernoulli]
With initial conditions
ode:=x^2+y(x)^2+2*y(x)*diff(y(x),x) = 0; ic:=[y(0) = 2]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=(x^2+y[x]^2)+2*y[x]*D[y[x],x]==0; ic={y[0]==2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2 + y(x)**2 + 2*y(x)*Derivative(y(x), x),0) ics = {y(0): 2} dsolve(ode,func=y(x),ics=ics)