85.33.49 problem 49
Internal
problem
ID
[22672]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
two.
First
order
and
simple
higher
order
ordinary
differential
equations.
A
Exercises
at
page
65
Problem
number
:
49
Date
solved
:
Thursday, October 02, 2025 at 09:03:38 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x)*G(y),0]`], [_Abel, `2nd type`, `class B`]]
\begin{align*} \left (3 y \cos \left (x \right )+2\right ) y^{\prime }&=\sin \left (x \right ) y^{2} \end{align*}
With initial conditions
\begin{align*}
y \left (0\right )&=-4 \\
\end{align*}
✓ Maple. Time used: 0.424 (sec). Leaf size: 99
ode:=(3*y(x)*cos(x)+2)*diff(y(x),x) = y(x)^2*sin(x);
ic:=[y(0) = -4];
dsolve([ode,op(ic)],y(x), singsol=all);
\[
y = \frac {\sec \left (x \right ) \left (\left (i \sqrt {3}-1\right ) \left (-648 \cos \left (x \right )^{2}+36 \sqrt {324 \cos \left (x \right )^{2}+1}\, \cos \left (x \right )-1\right )^{{2}/{3}}-i \sqrt {3}-2 \left (-648 \cos \left (x \right )^{2}+36 \sqrt {324 \cos \left (x \right )^{2}+1}\, \cos \left (x \right )-1\right )^{{1}/{3}}-1\right )}{6 \left (-648 \cos \left (x \right )^{2}+36 \sqrt {324 \cos \left (x \right )^{2}+1}\, \cos \left (x \right )-1\right )^{{1}/{3}}}
\]
✓ Mathematica. Time used: 66.235 (sec). Leaf size: 151
ode=(3*y[x]*Cos[x]+2)*D[y[x],{x,1}]==y[x]^2*Sin[x];
ic={y[0]==-4};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to \frac {\left (i \sqrt {3} \left (-648 \cos ^2(x)+36 \sqrt {324 \cos ^4(x)+\cos ^2(x)}-1\right )^{2/3}-\left (-648 \cos ^2(x)+36 \sqrt {324 \cos ^4(x)+\cos ^2(x)}-1\right )^{2/3}-2 \sqrt [3]{-648 \cos ^2(x)+36 \sqrt {324 \cos ^4(x)+\cos ^2(x)}-1}-i \sqrt {3}-1\right ) \sec (x)}{6 \sqrt [3]{-648 \cos ^2(x)+36 \sqrt {324 \cos ^4(x)+\cos ^2(x)}-1}} \end{align*}
✓ Sympy. Time used: 49.626 (sec). Leaf size: 105
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq((3*y(x)*cos(x) + 2)*Derivative(y(x), x) - y(x)**2*sin(x),0)
ics = {y(0): -4}
dsolve(ode,func=y(x),ics=ics)
\[
y{\left (x \right )} = - \frac {\sqrt [3]{\frac {\sqrt {\frac {\left (1296 + \frac {2}{\cos ^{2}{\left (x \right )}}\right )^{2} - \frac {4}{\cos ^{4}{\left (x \right )}}}{\cos ^{2}{\left (x \right )}}}}{2} + \frac {648}{\cos {\left (x \right )}} + \frac {1}{\cos ^{3}{\left (x \right )}}}}{3} - \frac {1}{3 \cos {\left (x \right )}} - \frac {1}{3 \sqrt [3]{\frac {\sqrt {\frac {\left (1296 + \frac {2}{\cos ^{2}{\left (x \right )}}\right )^{2} - \frac {4}{\cos ^{4}{\left (x \right )}}}{\cos ^{2}{\left (x \right )}}}}{2} + \frac {648}{\cos {\left (x \right )}} + \frac {1}{\cos ^{3}{\left (x \right )}}} \cos ^{2}{\left (x \right )}}
\]