85.33.64 problem 65

Internal problem ID [22687]
Book : Applied Differential Equations. By Murray R. Spiegel. 3rd edition. 1980. Pearson. ISBN 978-0130400970
Section : Chapter two. First order and simple higher order ordinary differential equations. A Exercises at page 65
Problem number : 65
Date solved : Thursday, October 02, 2025 at 09:06:36 PM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} x y^{\prime }-y&=2 x^{2} y^{2} y^{\prime } \end{align*}
Maple. Time used: 0.153 (sec). Leaf size: 260
ode:=x*diff(y(x),x)-y(x) = 2*x^2*y(x)^2*diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {2^{{1}/{3}} \left (c_1^{2} 2^{{1}/{3}} x +{\left (\left (x +\sqrt {\frac {x^{3}-2 c_1^{2}}{x}}\right ) c_1^{2} x^{2}\right )}^{{2}/{3}}\right )}{2 c_1 x {\left (\left (x +\sqrt {\frac {x^{3}-2 c_1^{2}}{x}}\right ) c_1^{2} x^{2}\right )}^{{1}/{3}}} \\ y &= \frac {\left (\left (-i \sqrt {3}-1\right ) {\left (\left (x +\sqrt {\frac {x^{3}-2 c_1^{2}}{x}}\right ) c_1^{2} x^{2}\right )}^{{2}/{3}}+x 2^{{1}/{3}} c_1^{2} \left (i \sqrt {3}-1\right )\right ) 2^{{1}/{3}}}{4 {\left (\left (x +\sqrt {\frac {x^{3}-2 c_1^{2}}{x}}\right ) c_1^{2} x^{2}\right )}^{{1}/{3}} c_1 x} \\ y &= -\frac {\left (\left (1-i \sqrt {3}\right ) {\left (\left (x +\sqrt {\frac {x^{3}-2 c_1^{2}}{x}}\right ) c_1^{2} x^{2}\right )}^{{2}/{3}}+x \left (1+i \sqrt {3}\right ) 2^{{1}/{3}} c_1^{2}\right ) 2^{{1}/{3}}}{4 {\left (\left (x +\sqrt {\frac {x^{3}-2 c_1^{2}}{x}}\right ) c_1^{2} x^{2}\right )}^{{1}/{3}} c_1 x} \\ \end{align*}
Mathematica. Time used: 38.354 (sec). Leaf size: 306
ode=x*D[y[x],x]-y[x]==2*x^2*y[x]^2*D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {\sqrt [3]{2}+\frac {\left (3 c_1 x^3+\sqrt {x^3 \left (-2+9 c_1{}^2 x^3\right )}\right ){}^{2/3}}{x}}{2^{2/3} \sqrt [3]{3 c_1 x^3+\sqrt {x^3 \left (-2+9 c_1{}^2 x^3\right )}}}\\ y(x)&\to \frac {i \sqrt [3]{2} \left (\sqrt {3}+i\right ) \left (3 c_1 x^3+\sqrt {x^3 \left (-2+9 c_1{}^2 x^3\right )}\right ){}^{2/3}+2^{2/3} \left (-1-i \sqrt {3}\right ) x}{4 x \sqrt [3]{3 c_1 x^3+\sqrt {x^3 \left (-2+9 c_1{}^2 x^3\right )}}}\\ y(x)&\to \frac {i \left (\sqrt [3]{2} \left (\sqrt {3}+i\right ) x-\left (\sqrt {3}-i\right ) \left (3 c_1 x^3+\sqrt {x^3 \left (-2+9 c_1{}^2 x^3\right )}\right ){}^{2/3}\right )}{2\ 2^{2/3} x \sqrt [3]{3 c_1 x^3+\sqrt {x^3 \left (-2+9 c_1{}^2 x^3\right )}}}\\ y(x)&\to 0 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x**2*y(x)**2*Derivative(y(x), x) + x*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out