85.34.12 problem 12

Internal problem ID [22720]
Book : Applied Differential Equations. By Murray R. Spiegel. 3rd edition. 1980. Pearson. ISBN 978-0130400970
Section : Chapter two. First order and simple higher order ordinary differential equations. B Exercises at page 67
Problem number : 12
Date solved : Thursday, October 02, 2025 at 09:13:04 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _Chini]

\begin{align*} y^{\prime }&=\sqrt {y}+x \end{align*}
Maple. Time used: 0.007 (sec). Leaf size: 65
ode:=diff(y(x),x) = x+y(x)^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ -\frac {2 \,\operatorname {arctanh}\left (2 \sqrt {\frac {y}{x^{2}}}\right )}{3}+\frac {4 \,\operatorname {arctanh}\left (\sqrt {\frac {y}{x^{2}}}\right )}{3}-\frac {2 \ln \left (-\frac {2 \left (x^{2}-y\right )}{x^{2}}\right )}{3}-\frac {\ln \left (-\frac {x^{2}-4 y}{x^{2}}\right )}{3}-2 \ln \left (x \right )+c_1 = 0 \]
Mathematica. Time used: 31.747 (sec). Leaf size: 716
ode=D[y[x],x]==x+Sqrt[y[x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{4} \left (3 x^2+\frac {e^{3 c_1} x \left (8+e^{3 c_1} x^3\right )}{\sqrt [3]{-e^{18 c_1} x^6+20 e^{15 c_1} x^3+8 \sqrt {-e^{24 c_1} \left (-1+e^{3 c_1} x^3\right ){}^3}+8 e^{12 c_1}}}+e^{-6 c_1} \sqrt [3]{-e^{18 c_1} x^6+20 e^{15 c_1} x^3+8 \sqrt {-e^{24 c_1} \left (-1+e^{3 c_1} x^3\right ){}^3}+8 e^{12 c_1}}\right )\\ y(x)&\to \frac {1}{72} \left (54 x^2-\frac {9 i \left (\sqrt {3}-i\right ) e^{3 c_1} x \left (8+e^{3 c_1} x^3\right )}{\sqrt [3]{-e^{18 c_1} x^6+20 e^{15 c_1} x^3+8 \sqrt {-e^{24 c_1} \left (-1+e^{3 c_1} x^3\right ){}^3}+8 e^{12 c_1}}}+9 i \left (\sqrt {3}+i\right ) e^{-6 c_1} \sqrt [3]{-e^{18 c_1} x^6+20 e^{15 c_1} x^3+8 \sqrt {-e^{24 c_1} \left (-1+e^{3 c_1} x^3\right ){}^3}+8 e^{12 c_1}}\right )\\ y(x)&\to \frac {1}{72} \left (54 x^2+\frac {9 i \left (\sqrt {3}+i\right ) e^{3 c_1} x \left (8+e^{3 c_1} x^3\right )}{\sqrt [3]{-e^{18 c_1} x^6+20 e^{15 c_1} x^3+8 \sqrt {-e^{24 c_1} \left (-1+e^{3 c_1} x^3\right ){}^3}+8 e^{12 c_1}}}-9 \left (1+i \sqrt {3}\right ) e^{-6 c_1} \sqrt [3]{-e^{18 c_1} x^6+20 e^{15 c_1} x^3+8 \sqrt {-e^{24 c_1} \left (-1+e^{3 c_1} x^3\right ){}^3}+8 e^{12 c_1}}\right )\\ y(x)&\to \frac {-\left (-x^6\right )^{2/3}+3 x^4+\sqrt [3]{-x^6} x^2}{4 x^2}\\ y(x)&\to \frac {\left (1+i \sqrt {3}\right ) \left (-x^6\right )^{2/3}+6 x^4+i \left (\sqrt {3}+i\right ) \sqrt [3]{-x^6} x^2}{8 x^2}\\ y(x)&\to \frac {1}{8} x^2 \left (\frac {\left (1+i \sqrt {3}\right ) x^4}{\left (-x^6\right )^{2/3}}+\frac {i \left (\sqrt {3}+i\right ) x^2}{\sqrt [3]{-x^6}}+6\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x - sqrt(y(x)) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -x - sqrt(y(x)) + Derivative(y(x), x) cannot be solved by the li