Internal
problem
ID
[22725]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
two.
First
order
and
simple
higher
order
ordinary
differential
equations.
C
Exercises
at
page
68
Problem
number
:
10
Date
solved
:
Thursday, October 02, 2025 at 09:13:58 PM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, _Bernoulli]
ode:=2*x*y(x)*diff(y(x),x)+x^2+y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2+y[x]^2)+(2*x*y[x])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2 + 2*x*y(x)*Derivative(y(x), x) + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)