85.40.2 problem 1 (b)

Internal problem ID [22759]
Book : Applied Differential Equations. By Murray R. Spiegel. 3rd edition. 1980. Pearson. ISBN 978-0130400970
Section : Chapter 4. Linear differential equations. A Exercises at page 177
Problem number : 1 (b)
Date solved : Thursday, October 02, 2025 at 09:14:24 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 16 y^{\prime \prime }-8 y^{\prime }+y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 14
ode:=16*diff(diff(y(x),x),x)-8*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{\frac {x}{4}} \left (c_2 x +c_1 \right ) \]
Mathematica. Time used: 0.012 (sec). Leaf size: 20
ode=16*D[y[x],{x,2}]-8*D[y[x],{x,1}]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{x/4} (c_2 x+c_1) \end{align*}
Sympy. Time used: 0.103 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - 8*Derivative(y(x), x) + 16*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} x\right ) e^{\frac {x}{4}} \]