Internal
problem
ID
[22768]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
4.
Linear
differential
equations.
C
Exercises
at
page
178
Problem
number
:
2
(a)
Date
solved
:
Thursday, October 02, 2025 at 09:14:27 PM
CAS
classification
:
[_Gegenbauer]
Using reduction of order method given that one solution is
ode:=(-x^2+1)*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1-x^2)*D[y[x],{x,2}]-2*x*D[y[x],{x,1}]+2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)) + 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False