85.46.2 problem 2 (b)

Internal problem ID [22790]
Book : Applied Differential Equations. By Murray R. Spiegel. 3rd edition. 1980. Pearson. ISBN 978-0130400970
Section : Chapter 4. Linear differential equations. C Exercises at page 181
Problem number : 2 (b)
Date solved : Thursday, October 02, 2025 at 09:14:39 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\left (5\right )}-y&=0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 101
ode:=diff(diff(diff(diff(diff(y(x),x),x),x),x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-\frac {\left (\sqrt {5}+1\right ) x}{4}} \left (-c_2 \sin \left (\frac {\sqrt {2}\, \sqrt {5-\sqrt {5}}\, x}{4}\right )+c_4 \cos \left (\frac {\sqrt {2}\, \sqrt {5-\sqrt {5}}\, x}{4}\right )\right )+c_1 \,{\mathrm e}^{x}+{\mathrm e}^{\frac {\left (\sqrt {5}-1\right ) x}{4}} \left (-\sin \left (\frac {\sqrt {2}\, \sqrt {5+\sqrt {5}}\, x}{4}\right ) c_3 +\cos \left (\frac {\sqrt {2}\, \sqrt {5+\sqrt {5}}\, x}{4}\right ) c_5 \right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 154
ode=D[y[x],{x,5}]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-\frac {1}{4} \left (1+\sqrt {5}\right ) x} \left (c_1 e^{\frac {1}{4} \left (5+\sqrt {5}\right ) x}+c_3 \cos \left (\sqrt {\frac {5}{8}-\frac {\sqrt {5}}{8}} x\right )+c_2 e^{\frac {\sqrt {5} x}{2}} \cos \left (\sqrt {\frac {5}{8}+\frac {\sqrt {5}}{8}} x\right )+c_4 \sin \left (\sqrt {\frac {5}{8}-\frac {\sqrt {5}}{8}} x\right )+c_5 e^{\frac {\sqrt {5} x}{2}} \sin \left (\sqrt {\frac {5}{8}+\frac {\sqrt {5}}{8}} x\right )\right ) \end{align*}
Sympy. Time used: 0.234 (sec). Leaf size: 143
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + Derivative(y(x), (x, 5)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{\frac {x \left (-1 + \sqrt {5}\right )}{4}} \sin {\left (\frac {\sqrt {2} x \sqrt {\sqrt {5} + 5}}{4} \right )} + C_{2} e^{\frac {x \left (-1 + \sqrt {5}\right )}{4}} \cos {\left (\frac {\sqrt {2} x \sqrt {\sqrt {5} + 5}}{4} \right )} + C_{3} e^{- \frac {x \left (1 + \sqrt {5}\right )}{4}} \sin {\left (\frac {\sqrt {2} x \sqrt {5 - \sqrt {5}}}{4} \right )} + C_{4} e^{- \frac {x \left (1 + \sqrt {5}\right )}{4}} \cos {\left (\frac {\sqrt {2} x \sqrt {5 - \sqrt {5}}}{4} \right )} + C_{5} e^{x} \]