85.54.2 problem 2

Internal problem ID [22823]
Book : Applied Differential Equations. By Murray R. Spiegel. 3rd edition. 1980. Pearson. ISBN 978-0130400970
Section : Chapter 4. Linear differential equations. B Exercises at page 197
Problem number : 2
Date solved : Thursday, October 02, 2025 at 09:14:59 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=x \sin \left (x \right ) \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 25
ode:=diff(diff(y(x),x),x)+y(x) = x*sin(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (x \right ) c_2 +\cos \left (x \right ) c_1 -\frac {x \left (x \cos \left (x \right )-\sin \left (x \right )\right )}{4} \]
Mathematica. Time used: 0.027 (sec). Leaf size: 34
ode=D[y[x],{x,2}]+y[x]==x*Sin[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{8} \left (\left (-2 x^2+1+8 c_1\right ) \cos (x)+2 (x+4 c_2) \sin (x)\right ) \end{align*}
Sympy. Time used: 0.091 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*sin(x) + y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} - \frac {x^{2}}{4}\right ) \cos {\left (x \right )} + \left (C_{2} + \frac {x}{4}\right ) \sin {\left (x \right )} \]