85.64.2 problem 1 (b)

Internal problem ID [22869]
Book : Applied Differential Equations. By Murray R. Spiegel. 3rd edition. 1980. Pearson. ISBN 978-0130400970
Section : Chapter 4. Linear differential equations. A Exercises at page 213
Problem number : 1 (b)
Date solved : Thursday, October 02, 2025 at 09:15:57 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} 4 x^{2} y^{\prime \prime }+y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=1 \\ y^{\prime }\left (1\right )&=0 \\ \end{align*}
Maple. Time used: 0.023 (sec). Leaf size: 14
ode:=4*x^2*diff(diff(y(x),x),x)+y(x) = 0; 
ic:=[y(1) = 1, D(y)(1) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \sqrt {x}\, \left (1-\frac {\ln \left (x \right )}{2}\right ) \]
Mathematica. Time used: 0.012 (sec). Leaf size: 18
ode=4*x^2*D[y[x],{x,2}]+y[x]==0; 
ic={y[1]==1,Derivative[1][y][1] ==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {1}{2} \sqrt {x} (\log (x)-2) \end{align*}
Sympy. Time used: 0.046 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2*Derivative(y(x), (x, 2)) + y(x),0) 
ics = {y(1): 1, Subs(Derivative(y(x), x), x, 1): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \sqrt {x} \left (1 - \frac {\log {\left (x \right )}}{2}\right ) \]