Internal
problem
ID
[22872]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
4.
Linear
differential
equations.
A
Exercises
at
page
213
Problem
number
:
1
(e)
Date
solved
:
Thursday, October 02, 2025 at 09:16:00 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)+5*x*diff(y(x),x)+4*y(x) = x^2+16*ln(x)^2; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+5*x*D[y[x],x]+4*y[x]==x^2+16*(Log[x])^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - x**2 + 5*x*Derivative(y(x), x) + 4*y(x) - 16*log(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)