Internal
problem
ID
[22876]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
4.
Linear
differential
equations.
A
Exercises
at
page
213
Problem
number
:
1
(i)
Date
solved
:
Thursday, October 02, 2025 at 09:16:06 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)-9*y(x) = x^(1/2)+1/x^(1/2); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]-9*y[x]==Sqrt[x]+1/Sqrt[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-sqrt(x) + x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) - 9*y(x) - 1/sqrt(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)