Internal
problem
ID
[22889]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
4.
Linear
differential
equations.
C
Exercises
at
page
213
Problem
number
:
5
Date
solved
:
Thursday, October 02, 2025 at 09:16:17 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*y(x) = 3*x-2; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==3*x-2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 2*x*Derivative(y(x), x) - 3*x + 2*y(x) + 2,0) ics = {} dsolve(ode,func=y(x),ics=ics)