Internal
problem
ID
[22891]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
4.
Linear
differential
equations.
C
Exercises
at
page
213
Problem
number
:
6
(b)
Date
solved
:
Thursday, October 02, 2025 at 09:16:19 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^4*diff(diff(y(x),x),x)+2*x^3*diff(y(x),x)+y(x) = 1/x^2; dsolve(ode,y(x), singsol=all);
ode=x^4*D[y[x],{x,2}]+2*x^3*D[y[x],x]+y[x]==1/x^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4*Derivative(y(x), (x, 2)) + 2*x**3*Derivative(y(x), x) + y(x) - 1/x**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**6*Derivative(y(x), (x, 2)) - x**2*y(x