Internal
problem
ID
[22913]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
4.
Linear
differential
equations.
B
Exercises
at
page
217
Problem
number
:
2
Date
solved
:
Thursday, October 02, 2025 at 09:16:32 PM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
With initial conditions
ode:=x^2*diff(diff(y(x),x),x)+2*x*diff(y(x),x)-6*y(x) = 0; ic:=[y(1/2) = 2]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+2*x*D[y[x],{x,1}]-6*y[x]==0; ic={y[1/2]==2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + 2*x*Derivative(y(x), x) - 6*y(x),0) ics = {y(1/2): 2} dsolve(ode,func=y(x),ics=ics)