85.73.8 problem 8

Internal problem ID [22961]
Book : Applied Differential Equations. By Murray R. Spiegel. 3rd edition. 1980. Pearson. ISBN 978-0130400970
Section : Chapter 7. Solution of differential equations by use of series. B Exercises at page 316
Problem number : 8
Date solved : Thursday, October 02, 2025 at 09:16:58 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y x&=\sin \left (x \right ) \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 39
Order:=6; 
ode:=diff(diff(y(x),x),x)+x*y(x) = sin(x); 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {x^{3}}{6}\right ) y \left (0\right )+\left (x -\frac {1}{12} x^{4}\right ) y^{\prime }\left (0\right )+\frac {x^{3}}{6}-\frac {x^{5}}{120}+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.013 (sec). Leaf size: 42
ode=D[y[x],{x,2}]+x*y[x]==Sin[x]; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to -\frac {x^5}{120}+c_2 \left (x-\frac {x^4}{12}\right )+\frac {x^3}{6}+c_1 \left (1-\frac {x^3}{6}\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x) - sin(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
ValueError : ODE x*y(x) - sin(x) + Derivative(y(x), (x, 2)) does not match hint 2nd_power_series_reg