85.74.1 problem 1

Internal problem ID [22963]
Book : Applied Differential Equations. By Murray R. Spiegel. 3rd edition. 1980. Pearson. ISBN 978-0130400970
Section : Chapter 7. Solution of differential equations by use of series. C Exercises at page 317
Problem number : 1
Date solved : Thursday, October 02, 2025 at 09:17:00 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+y \,{\mathrm e}^{x}&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \\ y^{\prime }\left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 16
Order:=6; 
ode:=diff(diff(y(x),x),x)+y(x)*exp(x) = 0; 
ic:=[y(0) = 1, D(y)(0) = 0]; 
dsolve([ode,op(ic)],y(x),type='series',x=0);
 
\[ y = 1-\frac {1}{2} x^{2}-\frac {1}{6} x^{3}+\frac {1}{40} x^{5}+\operatorname {O}\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 26
ode=D[y[x],{x,2}]+Exp[x]*y[x]==0; 
ic={y[0]==1,Derivative[1][y][0] ==0}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to \frac {x^5}{40}-\frac {x^3}{6}-\frac {x^2}{2}+1 \]
Sympy. Time used: 0.222 (sec). Leaf size: 41
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x)*exp(x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 0} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {x^{4} e^{2 x}}{24} - \frac {x^{2} e^{x}}{2} + 1\right ) + C_{1} x \left (- \frac {x^{2} e^{x}}{6} + 1\right ) + O\left (x^{6}\right ) \]