85.77.2 problem 5 (a)

Internal problem ID [22985]
Book : Applied Differential Equations. By Murray R. Spiegel. 3rd edition. 1980. Pearson. ISBN 978-0130400970
Section : Chapter 7. Solution of differential equations by use of series. A Exercises at page 341
Problem number : 5 (a)
Date solved : Thursday, October 02, 2025 at 09:17:14 PM
CAS classification : [_Bessel]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-9\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.014 (sec). Leaf size: 35
Order:=6; 
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+(x^2-9)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 \,x^{3} \left (1-\frac {1}{16} x^{2}+\frac {1}{640} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+\frac {c_2 \left (-86400-10800 x^{2}-1350 x^{4}+\operatorname {O}\left (x^{6}\right )\right )}{x^{3}} \]
Mathematica. Time used: 0.007 (sec). Leaf size: 44
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-9)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {1}{x^3}+\frac {x}{64}+\frac {1}{8 x}\right )+c_2 \left (\frac {x^7}{640}-\frac {x^5}{16}+x^3\right ) \]
Sympy. Time used: 0.304 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + (x**2 - 9)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{1} x^{3} \left (1 - \frac {x^{2}}{16}\right ) + O\left (x^{6}\right ) \]