85.83.5 problem 1 (e)

Internal problem ID [23002]
Book : Applied Differential Equations. By Murray R. Spiegel. 3rd edition. 1980. Pearson. ISBN 978-0130400970
Section : Chapter 10. Systems of differential equations and their applications. A Exercises at page 444
Problem number : 1 (e)
Date solved : Sunday, October 12, 2025 at 05:55:05 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d^{2}}{d t^{2}}y \left (t \right )&=x \left (t \right )-2\\ \frac {d^{2}}{d t^{2}}y \left (t \right )&=y \left (t \right )+2 \end{align*}
Maple. Time used: 0.050 (sec). Leaf size: 31
ode:=[diff(diff(y(t),t),t) = x(t)-2, diff(diff(y(t),t),t) = y(t)+2]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{-t} c_2 +{\mathrm e}^{t} c_1 +2 \\ y \left (t \right ) &= {\mathrm e}^{-t} c_2 +{\mathrm e}^{t} c_1 -2 \\ \end{align*}
Mathematica. Time used: 0.026 (sec). Leaf size: 74
ode={D[y[t],{t,2}]==x[t]-2,D[y[t],{t,2}]==y[t]+2}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to \frac {1}{54} e^{-t} \left (108 e^t+27 (c_1+c_2) e^{2 t}+c_1-c_2\right )\\ y(t)&\to \frac {1}{54} e^{-t} \left (-108 e^t+27 (c_1+c_2) e^{2 t}+c_1-c_2\right ) \end{align*}
Sympy. Time used: 0.128 (sec). Leaf size: 71
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-x(t) + Derivative(y(t), (t, 2)) + 2,0),Eq(-y(t) + Derivative(x(t), (t, 2)) - 2,0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - C_{1} e^{- t} + C_{2} e^{t} - C_{3} \sin {\left (t \right )} - C_{4} \cos {\left (t \right )} + 2 \sin ^{2}{\left (t \right )} + 2 \cos ^{2}{\left (t \right )}, \ y{\left (t \right )} = - C_{1} e^{- t} + C_{2} e^{t} + C_{3} \sin {\left (t \right )} + C_{4} \cos {\left (t \right )} - 2 \sin ^{2}{\left (t \right )} - 2 \cos ^{2}{\left (t \right )}\right ] \]