85.83.12 problem 4 (c)

Internal problem ID [23009]
Book : Applied Differential Equations. By Murray R. Spiegel. 3rd edition. 1980. Pearson. ISBN 978-0130400970
Section : Chapter 10. Systems of differential equations and their applications. A Exercises at page 444
Problem number : 4 (c)
Date solved : Thursday, October 02, 2025 at 09:17:29 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d^{2}}{d t^{2}}r \left (t \right )&=r \left (t \right )+y \left (t \right )\\ \frac {d^{2}}{d t^{2}}y \left (t \right )&=5 r \left (t \right )-3 y \left (t \right )+t^{2} \end{align*}
Maple
ode:=[diff(diff(r(t),t),t) = r(t)+y(t), diff(diff(y(t),t),t) = 5*r(t)-3*y(t)+t^2]; 
dsolve(ode);
 
\[ \text {No solution found} \]
Mathematica. Time used: 0.729 (sec). Leaf size: 360
ode={D[r[t],{t,2}]==r[t]+y[t],D[y[t],{t,2}]==5*r[t]-3*y[t]+t^2}; 
ic={}; 
DSolve[{ode,ic},{r[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} r(t)&\to \frac {1}{48} e^{-\sqrt {2} t} \left (-6 e^{\sqrt {2} t} t^2-3 e^{\sqrt {2} t}+20 c_1 e^{2 \sqrt {2} t}+10 \sqrt {2} c_2 e^{2 \sqrt {2} t}+4 c_3 e^{2 \sqrt {2} t}+2 \sqrt {2} c_4 e^{2 \sqrt {2} t}+8 (c_1-c_3) e^{\sqrt {2} t} \cos (2 t)+4 (c_2-c_4) e^{\sqrt {2} t} \sin (2 t)+20 c_1-10 \sqrt {2} c_2+4 c_3-2 \sqrt {2} c_4\right )\\ y(t)&\to \frac {1}{48} e^{-\sqrt {2} t} \left (6 e^{\sqrt {2} t} t^2-9 e^{\sqrt {2} t}+20 c_1 e^{2 \sqrt {2} t}+10 \sqrt {2} c_2 e^{2 \sqrt {2} t}+4 c_3 e^{2 \sqrt {2} t}+2 \sqrt {2} c_4 e^{2 \sqrt {2} t}-40 (c_1-c_3) e^{\sqrt {2} t} \cos (2 t)-20 (c_2-c_4) e^{\sqrt {2} t} \sin (2 t)+20 c_1-10 \sqrt {2} c_2+4 c_3-2 \sqrt {2} c_4\right ) \end{align*}
Sympy. Time used: 0.357 (sec). Leaf size: 211
from sympy import * 
t = symbols("t") 
r = Function("r") 
y = Function("y") 
ode=[Eq(-r(t) - y(t) + Derivative(r(t), (t, 2)),0),Eq(-t**2 - 5*r(t) + 3*y(t) + Derivative(y(t), (t, 2)),0)] 
ics = {} 
dsolve(ode,func=[r(t),y(t)],ics=ics)
 
\[ \left [ r{\left (t \right )} = \frac {\sqrt {2} C_{1} e^{\sqrt {2} t}}{2} - \frac {\sqrt {2} C_{2} e^{- \sqrt {2} t}}{2} - \frac {C_{3} \sin {\left (2 t \right )}}{10} - \frac {C_{4} \cos {\left (2 t \right )}}{10} - \frac {t^{2} \sin ^{2}{\left (2 t \right )}}{24} - \frac {t^{2} \cos ^{2}{\left (2 t \right )}}{24} - \frac {t^{2}}{12} + \frac {\sin ^{2}{\left (2 t \right )}}{48} + \frac {\cos ^{2}{\left (2 t \right )}}{48} - \frac {1}{12}, \ y{\left (t \right )} = \frac {\sqrt {2} C_{1} e^{\sqrt {2} t}}{2} - \frac {\sqrt {2} C_{2} e^{- \sqrt {2} t}}{2} + \frac {C_{3} \sin {\left (2 t \right )}}{2} + \frac {C_{4} \cos {\left (2 t \right )}}{2} + \frac {5 t^{2} \sin ^{2}{\left (2 t \right )}}{24} + \frac {5 t^{2} \cos ^{2}{\left (2 t \right )}}{24} - \frac {t^{2}}{12} - \frac {5 \sin ^{2}{\left (2 t \right )}}{48} - \frac {5 \cos ^{2}{\left (2 t \right )}}{48} - \frac {1}{12}\right ] \]