Internal
problem
ID
[23011]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
10.
Systems
of
differential
equations
and
their
applications.
A
Exercises
at
page
444
Problem
number
:
6
Date
solved
:
Sunday, October 12, 2025 at 05:55:05 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(diff(x(t),t),t)+diff(y(t),t)+x(t) = y(t)+sin(t), diff(diff(y(t),t),t)+diff(x(t),t)-y(t) = 2*t^2-x(t)]; ic:=[x(0) = 2, D(x)(0) = -1, y(0) = -9/2, D(y)(0) = -7/2]; dsolve([ode,op(ic)]);
ode={D[x[t],{t,2}]+D[y[t],t]+x[t]==y[t]+Sin[t],D[y[t],{t,2}]+D[x[t],t]-y[t]==2*t^2-x[t]}; ic={x[0]==2,Derivative[1][x][0] ==-1,y[0]==-9/2,Derivative[1][y][0] ==-7/2}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(x(t) - y(t) - sin(t) + Derivative(x(t), (t, 2)) + Derivative(y(t), t),0),Eq(-2*t**2 + x(t) - y(t) + Derivative(x(t), t) + Derivative(y(t), (t, 2)),0)] ics = {x(0): 2, Subs(Derivative(x(t), t), t, 0): -1, y(0): -9/2, Subs(Derivative(y(t), t), t, 0): -7/2} dsolve(ode,func=[x(t),y(t)],ics=ics)