Internal
problem
ID
[23024]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
10.
Systems
of
differential
equations
and
their
applications.
A
Exercises
at
page
491
Problem
number
:
3
Date
solved
:
Sunday, October 12, 2025 at 05:55:07 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t)+diff(y(t),t) = cos(t), x(t)+diff(diff(y(t),t),t) = 2]; ic:=[x(Pi) = 2, y(0) = 0, D(y)(0) = 1/2]; dsolve([ode,op(ic)]);
ode={D[x[t],{t,1}]+D[y[t],t]==Cos[t],x[t]+D[y[t],{t,2}]==2}; ic={x[Pi]==2,y[0]==0,Derivative[1][y][0] ==1/2}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-cos(t) + Derivative(x(t), t) + Derivative(y(t), t),0),Eq(x(t) + Derivative(y(t), (t, 2)) - 2,0)] ics = {x(pi): 2, y(0): 0, Subs(Derivative(y(t), t), t, 0): 1/2} dsolve(ode,func=[x(t),y(t)],ics=ics)