Internal
problem
ID
[23046]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
10.
Systems
of
differential
equations
and
their
applications.
C
Exercises
at
page
500
Problem
number
:
1
Date
solved
:
Thursday, October 02, 2025 at 09:17:48 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t)-5*x(t)+diff(y(t),t)+2*z(t) = 24*exp(-t), diff(x(t),t)-x(t)-y(t) = 0, 5*diff(y(t),t)-11*y(t)+2*diff(z(t),t)-2*z(t) = 0]; dsolve(ode);
ode={D[x[t],{t,1}]-5*x[t]+D[y[t],t]+2*z[t]==24*Exp[-t], D[x[t],{t,1}]-x[t]-y[t]==0,5*D[y[t],t]-11*y[t]+2*D[z[t],t]-2*z[t]==0}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-5*x(t) + 2*z(t) + Derivative(x(t), t) + Derivative(y(t), t) - 24*exp(-t),0),Eq(-x(t) - y(t) + Derivative(x(t), t),0),Eq(-11*y(t) - 2*z(t) + 5*Derivative(y(t), t) + 2*Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)