Internal
problem
ID
[23048]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
11.
Matrix
eigenvalue
methods
for
systems
of
linear
differential
equations.
A
Exercises
at
page
509
Problem
number
:
8
(b)
Date
solved
:
Thursday, October 02, 2025 at 09:17:50 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t)-x(t)+2*y(t)-z(t) = t^2, diff(y(t),t)+3*x(t)-y(t)+4*z(t) = exp(t), diff(z(t),t)-2*x(t)+y(t)-z(t) = 0]; dsolve(ode);
ode={D[x[t],{t,1}]-x[t]+2*y[t]-z[t]==t^2, D[y[t],{t,1}]+3*x[t]-y[t]+4*z[t]==Exp[t], D[z[t],t]-2*x[t]+y[t]-z[t]==0}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
Too large to display
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-t**2 - x(t) + 2*y(t) - z(t) + Derivative(x(t), t),0),Eq(3*x(t) - y(t) + 4*z(t) - exp(t) + Derivative(y(t), t),0),Eq(-2*x(t) + y(t) - z(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)
Timed Out