Internal
problem
ID
[23053]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
11.
Matrix
eigenvalue
methods
for
systems
of
linear
differential
equations.
A
Exercises
at
page
528
Problem
number
:
1
(d)
Date
solved
:
Thursday, October 02, 2025 at 09:18:22 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t)+3*x(t)-6*y(t) = 0, diff(y(t),t) = x(t)-3*y(t)]; ic:=[x(0) = 0, y(0) = 2]; dsolve([ode,op(ic)]);
ode={D[x[t],{t,1}]+3*x[t]-6*y[t]==0, D[y[t],{t,1}]==x[t]-3*y[t]}; ic={x[0]==0,y[0]==2}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(3*x(t) - 6*y(t) + Derivative(x(t), t),0),Eq(-x(t) + 3*y(t) + Derivative(y(t), t),0)] ics = {x(0): 0, y(0): 2} dsolve(ode,func=[x(t),y(t)],ics=ics)