Internal
problem
ID
[23109]
Book
:
An
introduction
to
Differential
Equations.
By
Howard
Frederick
Cleaves.
1969.
Oliver
and
Boyd
publisher.
ISBN
0050015044
Section
:
Chapter
4.
Linear
equations
of
the
first
order.
Exercise
4b
at
page
64
Problem
number
:
2
Date
solved
:
Thursday, October 02, 2025 at 09:22:52 PM
CAS
classification
:
[_linear]
With initial conditions
ode:=sin(x)*diff(y(x),x)+2*y(x)*cos(x) = 4*cos(x)^3; ic:=[y(1/4*Pi) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=Sin[x]*D[y[x],x]+2*y[x]*Cos[x]==4*Cos[x]^3; ic={y[Pi/4]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*y(x)*cos(x) + sin(x)*Derivative(y(x), x) - 4*cos(x)**3,0) ics = {y(pi/4): 1} dsolve(ode,func=y(x),ics=ics)