86.6.10 problem 10

Internal problem ID [23143]
Book : An introduction to Differential Equations. By Howard Frederick Cleaves. 1969. Oliver and Boyd publisher. ISBN 0050015044
Section : Chapter 5. Linear equations of the second order with constant coefficients. Exercise 5b at page 77
Problem number : 10
Date solved : Thursday, October 02, 2025 at 09:23:27 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 18
ode:=diff(diff(y(x),x),x)+4*diff(y(x),x)+5*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-2 x} \left (c_1 \sin \left (x \right )+c_2 \cos \left (x \right )\right ) \]
Mathematica. Time used: 0.011 (sec). Leaf size: 22
ode=D[y[x],{x,2}]+4*D[y[x],x]+5*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-2 x} (c_2 \cos (x)+c_1 \sin (x)) \end{align*}
Sympy. Time used: 0.092 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(5*y(x) + 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} \sin {\left (x \right )} + C_{2} \cos {\left (x \right )}\right ) e^{- 2 x} \]