86.6.12 problem 12

Internal problem ID [23145]
Book : An introduction to Differential Equations. By Howard Frederick Cleaves. 1969. Oliver and Boyd publisher. ISBN 0050015044
Section : Chapter 5. Linear equations of the second order with constant coefficients. Exercise 5b at page 77
Problem number : 12
Date solved : Thursday, October 02, 2025 at 09:23:28 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} x^{\prime \prime }-2 x^{\prime }+x&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 12
ode:=diff(diff(x(t),t),t)-2*diff(x(t),t)+x(t) = 0; 
dsolve(ode,x(t), singsol=all);
 
\[ x = {\mathrm e}^{t} \left (c_2 t +c_1 \right ) \]
Mathematica. Time used: 0.008 (sec). Leaf size: 16
ode=D[x[t],{t,2}]-2*D[x[t],t]+x[t]==0; 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to e^t (c_2 t+c_1) \end{align*}
Sympy. Time used: 0.081 (sec). Leaf size: 10
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(x(t) - 2*Derivative(x(t), t) + Derivative(x(t), (t, 2)),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = \left (C_{1} + C_{2} t\right ) e^{t} \]