Internal
problem
ID
[23176]
Book
:
An
introduction
to
Differential
Equations.
By
Howard
Frederick
Cleaves.
1969.
Oliver
and
Boyd
publisher.
ISBN
0050015044
Section
:
Chapter
7.
Polar
coordinates
and
vectors.
Exercise
7a
at
page
109
Problem
number
:
14
Date
solved
:
Thursday, October 02, 2025 at 09:23:55 PM
CAS
classification
:
[_separable]
With initial conditions
ode:=diff(r(theta),theta)*(1+1/2*cos(theta))-r(theta)*sin(theta) = 0; ic:=[r(1/2*Pi) = 2*a]; dsolve([ode,op(ic)],r(theta), singsol=all);
ode=D[r[\[Theta]],\[Theta]]*(1+1/2*Cos[\[Theta]] )-r[\[Theta]] ==0; ic={r[Pi/2]==2*a}; DSolve[{ode,ic},r[\[Theta]],\[Theta],IncludeSingularSolutions->True]
from sympy import * t = symbols("t") a = symbols("a") r = Function("r") ode = Eq((cos(t)/2 + 1)*Derivative(r(t), t) - r(t)*sin(t),0) ics = {r(pi/2): 2*a} dsolve(ode,func=r(t),ics=ics)