Internal
problem
ID
[23180]
Book
:
An
introduction
to
Differential
Equations.
By
Howard
Frederick
Cleaves.
1969.
Oliver
and
Boyd
publisher.
ISBN
0050015044
Section
:
Chapter
7.
Polar
coordinates
and
vectors.
Exercise
7a
at
page
109
Problem
number
:
18
Date
solved
:
Thursday, October 02, 2025 at 09:24:02 PM
CAS
classification
:
[_separable]
ode:=diff(r(theta),theta)*(sin(theta)-m*cos(theta))+r(theta)*(cos(theta)+m*sin(theta)) = 0; dsolve(ode,r(theta), singsol=all);
ode=D[r[\[Theta]],\[Theta]]*(Sin[\[Theta]]-m*Cos[\[Theta]]) + r[\[Theta]]*(Cos[\[Theta]]+m*Sin[\[Theta]])==0; ic={}; DSolve[{ode,ic},r[\[Theta]],\[Theta],IncludeSingularSolutions->True]
from sympy import * t = symbols("t") m = symbols("m") r = Function("r") ode = Eq((m*sin(t) + cos(t))*r(t) + (-m*cos(t) + sin(t))*Derivative(r(t), t),0) ics = {} dsolve(ode,func=r(t),ics=ics)