Internal
problem
ID
[23201]
Book
:
An
introduction
to
Differential
Equations.
By
Howard
Frederick
Cleaves.
1969.
Oliver
and
Boyd
publisher.
ISBN
0050015044
Section
:
Chapter
9.
The
operational
method.
Exercise
9c
at
page
137
Problem
number
:
7
(a)
Date
solved
:
Thursday, October 02, 2025 at 09:24:18 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(x),x),x)-4*diff(y(x),x)+13*y(x) = exp(2*x)*sin(3*x); ic:=[y(0) = 4, D(y)(0) = -25/6]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]-4*D[y[x],x]+13*y[x]==Exp[2*x]*Sin[3*x]; ic={y[0]==4,Derivative[1][y][0] ==-25/6}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(13*y(x) - exp(2*x)*sin(3*x) - 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 4, Subs(Derivative(y(x), x), x, 0): -25/6} dsolve(ode,func=y(x),ics=ics)