87.1.6 problem 6

Internal problem ID [23218]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 1. Elementary methods. First order differential equations. Exercise at page 9
Problem number : 6
Date solved : Thursday, October 02, 2025 at 09:24:31 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }+y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 10
ode:=diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{-x} \]
Mathematica. Time used: 0.016 (sec). Leaf size: 18
ode=D[y[x],{x,1}]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 e^{-x}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.069 (sec). Leaf size: 7
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- x} \]