Internal
problem
ID
[23225]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
1.
Elementary
methods.
First
order
differential
equations.
Exercise
at
page
9
Problem
number
:
14
Date
solved
:
Thursday, October 02, 2025 at 09:24:35 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+y(x) = 1/x*(y(x)-diff(y(x),x)); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-2*D[y[x],{x,1}]+y[x]==1/x*(y[x]-D[y[x],x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - (y(x) - Derivative(y(x), x))/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)
False