87.2.5 problem 5

Internal problem ID [23240]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 1. Elementary methods. First order differential equations. Exercise at page 17
Problem number : 5
Date solved : Thursday, October 02, 2025 at 09:25:05 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=y^{{2}/{3}} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 5
ode:=diff(y(x),x) = y(x)^(2/3); 
ic:=[y(0) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = 0 \]
Mathematica. Time used: 0.003 (sec). Leaf size: 12
ode=D[y[x],x]==y[x]^(2/3); 
ic={y[0]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {x^3}{27} \end{align*}
Sympy. Time used: 0.155 (sec). Leaf size: 7
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)**(2/3) + Derivative(y(x), x),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x^{3}}{27} \]