87.4.11 problem 11

Internal problem ID [23277]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 1. Elementary methods. First order differential equations. Exercise at page 37
Problem number : 11
Date solved : Thursday, October 02, 2025 at 09:28:13 PM
CAS classification : [_linear]

\begin{align*} x y^{\prime }+y&=x^{5} \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 16
ode:=x*diff(y(x),x)+y(x) = x^5; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x^{6}+6 c_1}{6 x} \]
Mathematica. Time used: 0.017 (sec). Leaf size: 19
ode=x*D[y[x],x]+y[x]==x^5; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {x^5}{6}+\frac {c_1}{x} \end{align*}
Sympy. Time used: 0.108 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**5 + x*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} + \frac {x^{6}}{6}}{x} \]