Internal
problem
ID
[23283]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
1.
Elementary
methods.
First
order
differential
equations.
Exercise
at
page
37
Problem
number
:
28
Date
solved
:
Thursday, October 02, 2025 at 09:28:30 PM
CAS
classification
:
[_separable]
ode:=diff(y(x),x)-2*x*y(x) = 4*x*y(x)^(1/2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]-2*x*y[x]==4*x*y[x]^(1/2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*x*sqrt(y(x)) - 2*x*y(x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)