Internal
problem
ID
[23288]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
1.
Elementary
methods.
First
order
differential
equations.
Exercise
at
page
37
Problem
number
:
33
Date
solved
:
Thursday, October 02, 2025 at 09:28:43 PM
CAS
classification
:
[_separable]
With initial conditions
ode:=2*x*y(x)+(x^2+1)*diff(y(x),x) = -2*x; ic:=[y(0) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=(1+x^2)*D[y[x],x]+2*x*y[x]==-2*x; ic={y[0]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*y(x) + 2*x + (x**2 + 1)*Derivative(y(x), x),0) ics = {y(0): 1} dsolve(ode,func=y(x),ics=ics)