87.5.6 problem 4

Internal problem ID [23299]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 1. Elementary methods. First order differential equations. Exercise at page 47
Problem number : 4
Date solved : Thursday, October 02, 2025 at 09:29:10 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=\sqrt {y} \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 14
ode:=diff(y(x),x) = y(x)^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ \sqrt {y}-\frac {x}{2}-c_1 = 0 \]
Mathematica. Time used: 0.057 (sec). Leaf size: 20
ode=D[y[x],x]==y[x]^(1/2); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{4} (x+c_1){}^2\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.103 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-sqrt(y(x)) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}^{2}}{4} + \frac {C_{1} x}{2} + \frac {x^{2}}{4} \]